

DESCRIPTION

The CENTRAL SEMICONDUCTOR GES6014, GES6016 types are Silicon NPN Transistors manufactured by the epitaxial planar process designed for general purpose medium power amplifier and switching applications. The PNP complementary types are GES6015, GES6017 respectively.

MAXIMUM RATINGS (T_A=25°C unless otherwise noted)

A	SYMBOL	GES6014	GES6016	UNIT
Collector-Base Voltage	Vсво	70	70	V
Collector-Emitter Voltage	VCES	70	70	v
Collector-Emitter Voltage	VCEO	60	60	v
Emitter-Base Voltage	VEBO	5.0	5.0	V
Collector Current	IC	800	800	mA
Collector Current (PEAK)	I CM	1500	1500	mA
Power Dissipation	PD	625	625	mW
Power Dissipation ($T_{C}=25^{\circ}C$)	PD	1.0	1.0	W
Operating and Storage Junction Temp.	Tj, T _{stq}	-65	TO +150	°C

ELECTRICAL CHARACTERISTICS (TA=25°C unless otherwise noted) crs6014

CVMDOL			GESOU14		GES6016	
SYMBOL	TEST CONDITIONS	. <u>MIN</u>	MAX	MIN	MAX	UNIT
Ісво	VCB=25V		10		10	nА
I EBO	VEB=3.0V		20		20	nA
BVCBO	I _C =100μA	70		70		V
BVCES	IC=100µA	70		70		v
BVCEO	I _C =10mA	60		60		v
BVEBO	l = 100μA	5.0		5.0		v
VCE(SAT)	IC=100mA, IB=10mA	-	0.150		0.150	v
VCE(SAT)	Ic=500mA, IB=50mA		0.500		0.500	v
VBE(SAT)	I _C =100mA, I _B =10mA	0.70	0.88	0.70	0.88	v
VBE(SAT)	$I_{C}=500 \text{ mA}$, $I_{B}=50 \text{ mA}$	0.80	1.0	0.80	1.0	v
VBE (ON)	$V_{CE}=5.0V$, $I_{C}=10mA$	0.55	0.75	0.55	0.75	v
^h FE	$V_{CE}=1.0V$, $I_{C}=100\mu A$	45		70		-
^h FE	$V_{CE}=1.0V$, $I_{C}=10mA$	100	300	200	500	
hFE	$V_{CE}=1.0V$, $I_{C}=100mA$	85		170	•	
hFE	$V_{CE}=2.0V$, $I_{C}=500mA$	20		20		
hfe	V _C E=10V, I _E =1.0mA, f=1.0kHz	65	450	130	750	
hie	V _{CE} =10V, I _E =1.0mA, f=1.0kHz	1.5	12	2.5	20	kΩ
hoe	$V_{CE}=10V$, $I_{F}=1.0mA$, f=1.0kHz		45	-	170	umos
Cob	$V_{CB}=10V$, $I_{E}=0$, f=1.0MHz		10		10	pF
Сіь	$V_{EB}=0.5V$, $I_{C}=0$. f=1.0MHz		50		45	pF
fT	VCE=10V, IE=10mA, f=30MHz	105	335	135	425	MHz
NF	V _{CE} =5.0V, I _E =100μA, BW=15.7kHz, Rs=5.0KΩ				-	
	f=10Hz, to 10kHz		5.0		3.0	dB
ton	$V_{CC}=30V$, $I_{C}(0N)=150mA$, $I_{B1}=15mA$, $V_{BE}(0FF)=150mA$, $V_{BE}(0FF)=150mA$	0 37	ТҮР	37T		ns
^t OFF	$V_{CC}=30V$, $I_{C}(0N)=150mA$, $I_{B1}=I_{B2}=15mA$	400		400T		ns

OUTSTANDING SUPPORT AND SUPERIOR SERVICES

PRODUCT SUPPORT

Central's operations team provides the highest level of support to insure product is delivered on-time.

- Supply management (Customer portals)
- Inventory bonding
- · Consolidated shipping options

DESIGNER SUPPORT/SERVICES

Central's applications engineering team is ready to discuss your design challenges. Just ask.

- Free quick ship samples (2nd day air)
- Online technical data and parametric search
- SPICE models
- Custom electrical curves
- Environmental regulation compliance
- Customer specific screening
- Up-screening capabilities

ss your design challenges.

· Custom product packing

- Special wafer diffusions
- PbSn plating options
- Package details
- Application notes
- · Application and design sample kits

Custom bar coding for shipments

Custom product and package development

REQUESTING PRODUCT PLATING

- 1. If requesting Tin/Lead plated devices, add the suffix "TIN/LEAD" to the part number when ordering (example: 2N2222A TIN/LEAD).
- If requesting Lead (Pb) Free plated devices, add the suffix "PBFREE" to the part number when ordering (example: 2N2222A PBFREE).

CONTACT US

Corporate Headquarters & Customer Support Team

Central Semiconductor Corp. 145 Adams Avenue Hauppauge, NY 11788 USA Main Tel: (631) 435-1110 Main Fax: (631) 435-1824 Support Team Fax: (631) 435-3388 www.centralsemi.com

Worldwide Field Representatives: www.centralsemi.com/wwreps

Worldwide Distributors: www.centralsemi.com/wwdistributors

For the latest version of Central Semiconductor's **LIMITATIONS AND DAMAGES DISCLAIMER**, which is part of Central's Standard Terms and Conditions of sale, visit: <u>www.centralsemi.com/terms</u>

